On (p,q)–Fibonacci and (p,q)–Lucas Polynomials Associated with Changhee Numbers and Their Properties

نویسندگان

چکیده

Many properties of special polynomials, such as recurrence relations, sum formulas, and symmetric have been studied in the literature with help generating functions their functional equations. In this paper, using (p,q)–Fibonacci (p,q)–Lucas Changhee numbers, we define (p,q)–Fibonacci–Changhee polynomials (p,q)–Lucas–Changhee respectively. We obtain some important identities relations these newly established by Then, generalize called generalized (p,q)–Fibonacci–Lucas–Changhee polynomials. derive a determinantal representation for terms Hessenberg determinant. Finally, give new recurrent relation

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Higher-order Changhee Numbers and Polynomials

In this paper, we consider the higher-order Changhee numbers and polynomials which are derived from the fermionic p-adic integral on Zp and give some relations between higher-order Changhee polynomials and special polynomials. 366 Dae San Kim, Taekyun Kim, Jong Jin Seo and Sang-Hun Lee

متن کامل

Degenerate Changhee-Genocchi numbers and polynomials

*Correspondence: [email protected] 2Graduate School of Education, Konkuk University, Seoul, 143-701, Republic of Korea Full list of author information is available at the end of the article Abstract In this paper, we study some properties of degenerate Changhee-Genocchi numbers and polynomials and give some new identities of these polynomials and numbers which are derived from the generating ...

متن کامل

A note on degenerate Changhee-Genocchi polynomials and numbers

In this paper, we consider the degenerate Changhee-Genocchi polynomials and numbers, and give some identities for these numbers and polynomials. AMS subject classification: 11B68, 11S40, 11S80.

متن کامل

New Changhee q-Euler numbers and polynomials associated with p-adic q-integrals

Using non-archimedean q-integrals on Zp defined in [15, 16], we define a new Changhee q-Euler polynomials and numbers which are different from those of Kim [7] and Carlitz [2]. We define generating functions of multiple q-Euler numbers and polynomials. Furthermore we construct multivariate Hurwitz type zeta function which interpolates the multivariate q-Euler numbers or polynomials at negative ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15040851